Can I use calipers off of “XXX” and place it on my “XXX”?

Originally posted on Modified Magazine

Mark Valskis from Brembo North America helps explain what goes into a properly designed big brake system. Upgrading the brakes on Honda Civics to Type-R calipers and rotors or bolting up the bigger 300ZX brakes to S13s and S14s are classic examples of upgrade paths that have proven to be both affordable and effective for grassroots enthusiasts. But more recently I’ve noticed a trend where some hard parking import enthusiasts are bolting huge multi-piston calipers and rotors off of European exotics like Porsches and Ferraris to their Subarus, Mitsubishis, Hondas and Nissans. This may look cool in the coffee shop parking lot, but as I learned when upgrading to the 1-inch Type-R master cylinder from the original 13/16-inch CX model master cylinder on my EG race car (which made a huge difference in brake pedal feel and firmness), there’s a lot more to properly upsizing your braking system than just adding larger-diameter rotors and increasing the number of piston in your calipers. According to Mark Valskis, engineering manager at Brembo North America, The first thing to consider in regards to the brake system is safety. There is a very large misconception that any caliper can be used on any vehicle, as long as it can be made to physically bolt up in some manner. However, there are vast differences in braking systems between vehicles, and often in ways that would not be predicted. For example, a Subaru WRX has approximately 30 percent more brake piston area than a Porsche 911. Taking a caliper from that Porsche application and applying it to a WRX (all other things being equal) would result in a 30 percent reduction in braking torque and a significant (and very unsafe) shift of brake balance to the rear of the vehicle. Understanding the importance of rotor thickness, not just diameter, and how this can impact performance and safety is also a key element to factor in when doing any sort of custom retrofitting of brake parts not designed for your car. A fundamental consideration is the brake disc thickness, Mark says. In a great many cases, we see calipers being used on discs that are thinner than what they have been designed for. In these cases, once the pads and the disc have worn, the first thing that can happen is the brake pads move past the abutment surfaces on the caliper, resulting in damage or brake failure. It is also possible that the pistons move completely past the seals in the caliper, resulting in complete and catastrophic brake failure. Just like the rotors, the calipers are also designed for specific operating conditions, so bolting them up to an entirely different chassis can also be problematic, if not downright dangerous. The caliper bodies themselves are built to withstand the structural requirements of their intended application, Mark says. We have seen instances where calipers are being used far outside the bounds of their design loads. The ABS system is also designed to function optimally only within the parameters of the original braking system.

modp_1105_2_o+breaking_bbk+porsche_caliper

Type-R brakes on base-model Civics and Integras is commonplace, but Porsche 6-pot calipers and 14-inch rotors on a Subaru? Is this a case of sacrificing performance for style?

By using components that are well outside these bounds, especially as it relates to fluid volume which is impacted by caliper piston area, caliper stiffness and so on the ABS system performance suffers. Mark also made the excellent point that custom retrofits, like we’re starting to see more of, also involve producing a caliper bracket adapter, a component that needs to be designed, analyzed and tested to prove its integrity for the system’s lifetime. Mark elaborates, Even if the components chosen to adapt are appropriate, without this very important detail being properly designed, the system could also be extremely unsafe and experience a catastrophic failure. The primary benefit of upgrading to bigger brakes is, of course, greater fade resistance and improved modulation, rather than one-stop braking distance. As we experienced firsthand with Project G35, where the undersized (non-Brembo) OEM brakes were quickly overwhelmed by the heat buildup produced by track testing, only when we upgraded to significantly larger brakes (in this case AP Racing front and rear BBKs) did we see consistent braking performance lap after lap. The BBKs provided the ability to efficiently convert, store and dissipate the kinetic energy (in the form of heat) being produced during repeated and heavy deceleration. As to the question, How big is too big? when it comes to upgrading a braking system for high-performance use, Mark from Brembo responded, While mass in the brake disc is generally beneficial to the performance of the braking system, clearly it is not to the other performance parameters of the vehicle, such as acceleration, ride and handling due to the effects of increased unsprung mass. The brake disc mass must therefore be properly balanced with other performance considerations. In many cases, depending on the vehicle in question, it’s possible to reduce the system’s overall weight while increasing the thermal capacity of the brake disc. This is possible due to multi-piece brake discs and high-performance, fixed-mount aluminum calipers in place of factory one-piece discs and cast-iron sliding calipers.

2015 Honda Civic Type-R equipped with a Brembo brake system as Original Equipment (OE).

2015 Honda Civic Type-R equipped with a Brembo brake system as Original Equipment (OE).

Mark then expanded on the topic of brake system sizing by adding, First, we should dispel the myth that more equals better as it relates to components of the brake system, calipers in particular. Simply increasing the number of pistons in a caliper does not make for a superior caliper. The number of pistons in a caliper is a function of optimization for a particular pad shape and piston area, and for the most part, has little direct bearing on the performance of the braking system. Likewise, increasing the piston area is not the mark of a superior brake system. We often see ads or statements expounding upon X percent’ increase in piston area or braking power. The fact is that in almost every circumstance, this is to be specifically avoided. Given that Brembo is the global leader in braking system design, a fact proven by its dominance at the highest levels of motorsport, as well as being the factory choice on many of today’s highest performing road cars, we asked Mark for a little insight into how the company goes about designing its BBKs.

IMG_6461

Brembo’s GT big brake kits are second to none, thanks to the company’s extensive experience

The design of a Brembo GT braking system first begins by an analysis of the original equipment braking system and the pertinent vehicle parameters. This includes the dimensions of all of the original braking system components, including piston area, pad area, disc diameter, thickness, annulus width and air gap. The most pertinent vehicle parameters are the gross weight, weight distribution, center of gravity, wheelbase, top speed and vehicle usage, as well as tire size(s). Calculations are then performed in order to determine the best disc size for the application. Brembo has internal standards for this, based on our experience as an OEM supplier, the performance aftermarket and top-level racing. Due to our unique position in this respect, we have performed tens of thousands of road, track and dyno tests on vehicles and have used this data to establish a threshold for the disc thermal capacity. The caliper piston area is selected in order to closely maintain the original braking torque and fluid volumes. Calculations and dynamic simulations are performed to verify optimum brake balance through the full range of deceleration rates and to ensure safety, performance and the integrity of the ABS system. Further calculations are made for the brake pad surface area and volume. Mark then went on to add that, Each of Brembo’s calipers undergo complete functional and structural testing, as well as environmental testing (salt spray corrosion, etc.) to prove its strength and fatigue lifetime. These tests have been performed at values exceeding that of any application that it is to be employed in. Each time a new application is created, the loads are compared to the qualification values to verify that the caliper meets the structural requirements. If an application should happen to exceed the tested parameters, a full complement of structural and fatigue testing is performed at new higher values. Discs have likewise undergone full dyno testing for thermal shock, thermal fatigue, high deceleration resistance, friction coefficient, wear, etc. The disc bells and caliper brackets are designed to adapt the Brembo disc and caliper to the vehicle. Using the results from the braking system calculations as inputs, these components are analyzed using finite element analysis to evaluate the stress levels, and are physically tested to verify fatigue life at maximum applied torque. There is, of course, a lot of very interesting science and engineering hidden beneath the surface of a high-quality BBK, things like material choices and design considerations that maximize caliper stiffness. Look for a future discussion on this very subject, if we’re fortunate enough to tap into the bottomless pool of brake system knowledge housed by Mark and his team of engineers at Brembo.



Brembo Brakes: Stopping Everything from Ferrari to F1! – The Downshift Ep. 72
On this episode of The Downshift, we head to Bergamo Italy to visit Brembo, the world’s largest brake manufacturer. Brembo was founded in 1961 and has become known for their technical innovation and reliability. Brembo brakes can be found on the worlds fastest road cars, as well as in the worlds most renown racing series from Nascar to F1.

Brembo (General News) Brembo Performance

The Advantages of Cross Drilled and Slotted Discs

This article was originally posted by Modified Magazine. Click here to read it.

We’ve received quite a few emails lately asking us to explain what the advantages are of cross-drilled and slotted rotors, as compared to the blank rotors most cars come standard with. We’ve also had requests to explain why many slotted rotors these days have curved or J-hook shaped slots, rather than straight slots. Rather than giving you the Wikipedia answer, we went right to the source by once again contacting Mark Valskis at Brembo North America (some of you will recall his contribution to the big brake kit Tech Talk story in the May ’11 issue).

As most of you already know, the basic function of a brake disc is to provide a mating surface for the brake pads so that when you stomp on the brake pedal the friction material that makes up the pad is squeezed against the rotors (by the calipers), converting forward motion into heat as the car slows. That heat is then radiated to the atmosphere as air flows over and through the rotors (and the rest of the braking system), completing the conversion of kinetic energy into thermal energy.

According to Mark at Brembo, cross-drilled rotors came into being because of the need to evacuate gases or water from the interface between the disc face and the brake pad surface. As Mark further clarified, “Modern brake pads don’t have an issue with out-gassing like they did many years ago, but the cross-drilling is still helpful for use in wet conditions, especially when the pad surface area is large. Additionally, cross-drilling increases the surface area of the disc, and this aids in disc cooling (one factor in brake disc cooling is the ratio of surface area to disc mass). The most significant feature of the holes (when done correctly) is that they continually refresh the brake pad surface, providing improved performance and greater disc life. As the holes pass the brake pad they essentially clean the surface, helping to prevent pad glazing or hardening. This effect can be easily observed on a drilled disc near the outer edge where there are no holes. In this area, the pad surface is not refreshed and you will typically see greater disc wear in this unswept area.” It’s also worth noting that this type of pad refreshing by cross-drilled and/or slotted rotors helps maintain more consistent frictional performance.

Rotor Education Tech Talk Cad Drawing
These CAD drawings of a slotted and ventilated Brembo brake disc illustrate just how compl
modp-1111-03+rotor-education-tech-talk+cad-drawing

Some of you may not be fans of cross-drilled rotors because you’ve seen cracks in the disc surface radiating out from the drilled holes, but as Mark points out, not all drilled discs are created equally. “Brembo has a long list of requirements for drilled discs. First, the holes are not just simple cylindrical holes. They have a more complicated shape that requires special tools to create. We also have strict requirements on hole density or the number of holes per given surface area of the disc. Additionally, there are requirements for the hole size and placement of the holes, including distance between holes, distance from braking surface edges, distance to disc vanes, angular offset of holes and more.”

But even with the highest quality cross-drilled discs, there can be issues with thermal shock and fatigue around the holes when using very aggressive racing brake pads. As Mark explained, “Slotted discs were developed to provide the benefit of refreshing the pad surface, while being able to be used with top-level racing friction materials. Drilled discs provide the same benefit [refreshing the pads], but also increase the cooling of the brake disc. With top-level racing materials, the heat input is very rapid and the increase in localized cooling around the holes can cause issues.” So slotted rotors were developed as a solution to a very specific problem associated with extremely aggressive friction material normally associated with racing, though if you’re anything like me and run some pretty aggressive brake pads on the street as well as at the track, then slotted rotors may be the right choice for your car.

Rotor Education Tech Talk Cross Cut
These CAD drawings of a slotted and ventilated Brembo brake disc illustrate just how compl

modp-1111-04+rotor-education-tech-talk+cross-cut

As for the shape of the slots, Mark had this to say: “The different design of the slots is due to extensive research and development, including [brake] dyno testing. Due to the fact that track testing is required, and thanks to strong collaboration with many top-level racing teams, Brembo has developed a very broad knowledge of the many different types of slot shapes possible when machining discs.” Since this type of extensive R&D is really outside the scope of all but the biggest brake system manufacturers, a lot of what you’re seeing in the aftermarket are companies copying what leaders like Brembo are doing with respect to slot shape, slot spacing, slot depth and so on.

Ultimately, the slots are all designed to do the same thing (refresh the brake pads), but different shapes no doubt impact the aggressiveness with which the pads are refreshed and also likely affect localized cooling of the disc. And speaking of cooling, the internal structure of ventilated rotors plays a very important role here. “The mass of the disc is the determining factor in how much energy the disc can absorb, while the design of the internal geometry helps improve the disc’s ability to shed the heat,” Mark explains. “The key factor in the use of a vented disc versus a solid disc is the increase in the ratio of disc surface area to mass. Heat transfer to the air occurs only on the surfaces of the disc that are directly exposed to air; so the more surface area, the better the disc can shed the heat.”

Rotor Education Tech Talk Display Model
This NASCAR braking system provides some interesting insight into disc slot design – note

As for the internal vane structure of a ventilated disc, Mark adds: “There are limitless internal vane structures that are possible. Design of the vane structure has a dramatic effect on the performance of the brake disc. Some designs, such as directional curved-vane discs actually improve the airflow through the disc by turning the disc into a centrifugal pump. However, the cost of implementing this is increased due to the need for unique left- and right-hand discs. Brembo has patented a ‘pillar vane’ internal geometry that provides nearly all the airflow advantages of the curved vane discs while being able to use the same disc on both the left and right sides of the vehicle.”

Who knew so much technology goes into these seemingly simple iron discs (the material composition of brake rotors being a topic for another month). But when you consider just how vitally important the braking system is to safety and performance, it shouldn’t come as a surprise that industry leaders like Brembo are constantly looking for ways to improve the design of their brake discs.
Rotor Education Tech Talk David

Send your feedback to dpratte@modified.com

Read more: http://www.modified.com/tech/modp-1111-rotor-education-tech-talk/viewall.html#ixzz27PLW71oM

Brembo (General News) Brembo Performance